Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Org Biomol Chem ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20235994

ABSTRACT

Nirmatrelvir (Paxlovid) is an FDA approved drug that targets SARS-COV-2 3CLprotease. We report an optically active synthesis of nirmatrelvir that avoids a critical epimerization step. Our initial coupling of gem-dimethyl bicyclo[3.1.0]proline methyl ester with tert-leucine-trifluoroacetamide using standard coupling reagents, EDC and HOBt, provided the corresponding dipeptide derivative in excellent yield, however, a significant epimerization was observed at the tert-leucine bearing chiral center. To circumvent this epimerization problem, we developed a ZnCl2-mediated direct N-trifluroacetylation of Boc-derivatives for the synthesis of nirmatrelvir. This protocol has been utilized for N-acyl bond formation with other anhydrides without epimerization. The present synthetic route can be useful for the synthesis of structural variants of nirmatrelvir without significant epimerization.

2.
Microbiol Res ; 262: 127099, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1905582

ABSTRACT

BACKGROUND: Emergence of SARS-CoV-2 VOCs at different time points through COVID-19 pandemic raised concern for increased transmissibility, infectivity and vaccination breakthroughs. METHODS: 1567 international travellers plus community transmission COVID-19 cases were analysed for mutational profile of VOCS, that led to notable waves in India, namely Alpha, Delta, and Omicron. Spike mutations in Linkage Disequilibrium were investigated for potential impact on structural and functional changes of Spike-ACE2. RESULTS: ORF1ab and spike harboured diverse mutational signatures for each lineage. B.1.617.2 and AY. * demonstrated comparable profile, yet non-clade defining mutations were majorly unique between international vs community samples. Contrarily, Omicron lineages showed substantial overlap in non-clade defining mutations, signifying early phase of transmission and evolution within Indian community. Mutations in LD for Alpha [N501Y, A570D, D1118H, S982A], Delta [P681R, L452R, EFR:156-158 G, D950N, G142D] and Omicron [P681H, D796Y, N764K, N969K, N501Y, S375F] resulted in decreased binding affinity of Spike-ACE2 for Alpha and BA.1 whereas Delta, Omicron and BA.2 demonstrated strong binding. CONCLUSION: Genomic surveillance tracked spread of VOCs in international travellers' vs community transmission. Behavioural transmission patterns of variants, based on selective advantage incurred by spike mutations, led us to predict sudden takeover of Delta over Alpha and BA.2 over BA.1 in India.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Mutation , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Microbiological research ; 2022.
Article in English | EuropePMC | ID: covidwho-1905005

ABSTRACT

Background Emergence of SARS-CoV-2 VOCs at different time points through COVID-19 pandemic raised concern for increased transmissibility, infectivity and vaccination breakthroughs. Methods 1567 international travellers plus community transmission COVID-19 cases were analysed for mutational profile of VOCS, that led to notable waves in India, namely Alpha, Delta, and Omicron. Spike mutations in Linkage Disequilibrium were investigated for potential impact on structural and functional changes of Spike-ACE2. Results ORF1ab and spike harboured diverse mutational signatures for each lineage. B.1.617.2 and AY. * demonstrated comparable profile, yet non-clade defining mutations were majorly unique between international vs community samples. Contrarily, Omicron lineages showed substantial overlap in non-clade defining mutations, signifying early phase of transmission and evolution within Indian community. Mutations in LD for Alpha [N501Y, A570D, D1118H, S982A], Delta [P681R, L452R, EFR:156-158 G, D950N, G142D] and Omicron [P681H, D796Y, N764K, N969K, N501Y, S375F] resulted in decreased binding affinity of Spike-ACE2 for Alpha and BA.1 whereas Delta, Omicron and BA.2 demonstrated strong binding. Conclusion Genomic surveillance tracked spread of VOCs in international travellers’ vs community transmission. Behavioural transmission patterns of variants, based on selective advantage incurred by spike mutations, led us to predict sudden takeover of Delta over Alpha and BA.2 over BA.1 in India. Graphical

4.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438673

ABSTRACT

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Esters/chemistry , Esters/pharmacology , Halogenation , Humans , Ibuprofen/analogs & derivatives , Ibuprofen/pharmacology , Indomethacin/analogs & derivatives , Indomethacin/pharmacology , Molecular Docking Simulation , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2/metabolism , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Vero Cells
5.
J Med Chem ; 64(19): 14702-14714, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1412442

ABSTRACT

Here, we report the synthesis, structure-activity relationship studies, enzyme inhibition, antiviral activity, and X-ray crystallographic studies of 5-chloropyridinyl indole carboxylate derivatives as a potent class of SARS-CoV-2 chymotrypsin-like protease inhibitors. Compound 1 exhibited a SARS-CoV-2 3CLpro inhibitory IC50 value of 250 nM and an antiviral EC50 value of 2.8 µM in VeroE6 cells. Remdesivir, an RNA-dependent RNA polymerase inhibitor, showed an antiviral EC50 value of 1.2 µM in the same assay. Compound 1 showed comparable antiviral activity with remdesivir in immunocytochemistry assays. Compound 7d with an N-allyl derivative showed the most potent enzyme inhibitory IC50 value of 73 nM. To obtain molecular insight into the binding properties of these molecules, X-ray crystal structures of compounds 2, 7b, and 9d-bound to SARS-CoV 3CLpro were determined, and their binding properties were compared.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Dynamics Simulation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Pyridines/chemistry , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL